Roll No.:....

B033413(033)

B. Tech. (Fourth Semester) Examination April-May 2022

(AICTE Scheme)

(IT Branch)

ANALOG ELECTRONIC CIRCUITS

Time Allowed: Three hours

Maximum Marks: 100

Minimum Pass Marks: 35

Note: Part (a) is compulsory from each unit.

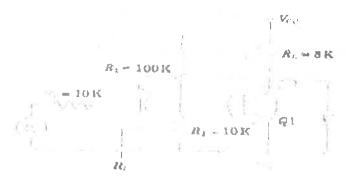
Attempt any two parts from (b), (c) and (d) to each unit. Part (a) is of 4 marks and part (b), (c) and (d) has 8 marks.

Unit-I

- 1. (a) Write diode current equation and explain each term.
 - (b) Show that I_0 increases by 11% per degree rise temperature for Germanium.

- (c) Derive the expression for DC current, RMS current, DC power, AC power, Efficiency, Ripple factor for Half Wave Rectifier.
- (d) Write the short note on Zener Breakdown and Avalanche Breakdown.

Unit-II


- 2. (a) Why an ordinary junction transistor is called bipolar?
 - (b) Draw and explain the characteristics of commonemitter configuration of transistor.
 - (c) Explain early effect in transistor with suitable diagram.
 - (d) Draw and explain the Ebers-Moll model of a transistor.

Unit-Ⅲ

- 3. (a) What is the requirement of h-parameter models?
 - (b) Derive the expression for CE short circuit current gain A_i as a function of frequency.
 - (c) Derie an expression for A_p , R_i , A_v and R_0 using exact analysis.

[3]

(d) For the circuit shown, calculate $A_i = I_0/I_r$, A_v , A_{vs} , R_i and R_0 . Transistor h parameter are as follows $h_{jc} = 1.1$ K, $h_{re} = 2.5 \times 10^{-4}$, $h_{fe} = 50$, $h_{oc} = 25$ μ A/V.

Unit-IV

- 4. (a) What do you mean by Fidelity of an amplifer?
 - (b) Draw the two stage RC coupled amplifiers and explain its response in LF and HF.
 - (c) Explain Noise Figure and show the procedure for measurement of noise figure.
 - (d) Explain magnitude bode plot of a 2-pole transfer function.

Unit-V

- 5. (a) Differential between positive and negative feedback.
 - (b) Explain Barkhausen Criterion and condition of oscillation.
 - (c) Discuss feedback amplifier topologies.
 - (d) Draw a circuit crystal controlled oscillator. Explain its working principle in details.